AACR - San Diego - April 2014 - contact akyle@bccrc.ca

Alastair Kyle, Maria-Jose Gandolfo, Jennifer Baker & Andrew Minchinton. Radiation Biology Unit, BC Cancer Research Centre, Vancouver Canada

Introduction

Purpose - To apply a tumour mapping technique to determine mechanisms limiting the *in vivo* biological activity of a panel of camptothecin analogues and to explore avenues for improving their activity.

Background - The Camptotheca tree extract camptothecin and its synthetic analogues represent a chemically diverse class of biologically active topoisomerase interfering agents with differing physicochemical properties, tissue dynamics and clinical use.

	Topotecan	Irinotecan	Irinophore C	SIN-38
molecular weight	421	588		392
plasma half-life	0.3 hr	1 hr	7.5 hr	
active metabolite		SN-38	SN-38	
log D(octanol:water)	0.8	2.85		2.6

Media stability and cellular accumulation of camptothecins in stirred solutions (37C, pH 7.4). The drugs undergo reversible conversion between open- and closed-ring conformations. Cellular accumulation was found to be higher in the closed-ring form.

Findings

Tissue distribution: Of the campthothecins studied topotecan exhibited a relatively uniform distribution in tissue; 100-µm distal to vessels it reached 94±5% of levels seen proximal to blood vessels while irinotecan and irinophore C reached $41\pm10\%$ and $5\pm2\%$ respectively.

Vessel extravasation: Topotecan extravasated equally from all vessels while irinotecan and irinophore C only emerged from certain vessels. The pattern of vessel extravastion was cell line dependent with HCT116 xenografts exhibiting a random mix of permeable and non-permeable vessels throughout the tissue while in HT29 xenografts permeable vessels were located around the periphery of the each tumour.

Caveat to drug distribution: Irinotecan is converted systemically to SN38 and it was found that SN38 exhibited a tumour distribution similar to topotecan. Hence the poor distribution of irinotecan and Irinophore C could be bypassed via systemic conversion to SN38.

Tumour drug activity: Micro-regional analysis showed that all 3 agents could initially induce a complete inhibition of proliferation. However, washout of topotecan and irinotecan (topotecan > irinotecan >> irinophore C) was linked to a rapid return to proliferation by 24-hours. Irinophore C exhibited a sustained plasma exposure and exerted much longer growth inhibition of ~1-week.

Conclusions

Tumor retention rather than drug access was the key factor limiting the activity of these camptothecins, and strategies like that used by irinophore C to extend drug exposure in plasma are promising.

Acknowledgements

This research was supported by the National Cancer Institute of Canada (with funds from the Canadian Cancer Society) and the Canadian Institutes for Health Research.

Tissue mapping I - *microregional distribution*

Methods - Using complete tissue cryosections and multiplexed immunostaining techniques drug-derived fluorescence was mapped in relation to tumour vasculature and blood flow in tissue cryosections.

Comparison of drug distribution at 1 hour in relation to tumour vasculature and blood flow. Topotecan exhibits the most rapid tissue distribution while the extravasation and diffusion of irinotecan and irinophore C are limited to a subset of drug-permeable vessels.

Drug extravasation: HCT116 vs HT29 xenografts

Irinophore C and irinotecan extravasation is limited to a subset of drug-permeable vessels. In the HCT116 xenografts these are randomly situated throughout the tissue while in the HT29 permeable vessels are located on the periphery of the tumours.

Camptothecins: tissue dynamics and implications for therapy

Workflow for mapping drug distribution in tissue sections

Drug-derived fluorescence in relation to vasculature & blood flow

Time course of drug build-up and wash-out

vasculature (CD31)

B Topoteca

distance to nearest blood vessel (µm)

within the tumours.

3D tissue drug kinetics under constant drug exposure

Using 3D-tissue discs a direct comparison between camptothecin diffusion was performed under matched exposure conditions.

grown to 150-300 μm.

Results:

• all three camptothecins exhibited diminished tissue accumulation over time under constant exposure.

conversion from closed to open-ring configuration over time.

at 1 hour but had also longer tissue retention.

blood flow (DiOC₇(3)) drug-derived fluorescence

Time-course of drug build-up and wash-out in HCT116 xenografts. Topotecan exhibits the most uniform distribution at 1 h. Irinophore C is retained significantly at 24 hours but does not distribute as effectively

Tissue mapping II - *microregional drug activity*

Time course of drug activity: proliferation and apoptosis Methods: Tissue sections were stained to map drug activity via proliferation & apoptosis in relation to vasculature, blood perfusion and tissue oxygenation status. HCT116 or HT29 xenograft grown to ~150 mm³ 1 (DiOC₇(3)) . (BrdUrd) Workflow for mapping drug activity in complete tissue sections blood flow (DiOC₇(3)) hypoxia (pimonidazole) proliferation (BrdUrd) vasculature (CD31)

Implications for tumour control -

Dose splitting versus extended plasma exposure

- Irinophore C outperformed irinotecan at matched doses
- Both irinotecan and topotecan benefited from a dose splitting strategy that targeted S-phase cells on two consecutive days (24hour gap).
- Irinotecan also benefited when a single dose was split with a 2-hour gap, consistent with poor tumour distribution from a single dose.

Tumour growth delay following 2 or 3 week treatment schedules. Extended plasma exposures versus dose splitting strategies were evaluated in HCT116 (p53 WT) and HT29 (p53 MUT) tumour xenografts

BC Cancer Agency CARE & RESEARCH

B - HT29 (p53 mut) A - HCT116 (p53 WT) opotecan - 10 mg/kg Irinotecan - 50 mg/kg Irinophore C - 50 mg/kg Irinotecan - 50 mg/kg Irinophore C - 50 mg/kg Cleaved Caspase

 control

 1 h

 2 h

 2 h

 4 h

 3 day

 3 day

 1 day

 1 day

 2 h

 3 day

 3 day

 1 day

 1 day

 2 h

 1 day

 3 day

 1 day

 1 day

 2 day

 1 day

 2 day

 1 day

 2 day

 3 day

 1 day

 2 day

 1 day

 2 day

 1 day

 2 day

 1 day

 2 day

 3 day

 1 day

 2 day

 1 day

 2 day

 1 day

 3 day

 1 day

 1 day

 2 day

 1 day

 2 day

 1 day

 3 day

 1 day

 1 day

 1 day

 1 day

Localization and time-course of drug activity in HCT116 xenografts. All three agents uniformly inhibit proliferation at 4 & 8 hours following treatment. By 24 hours topotecan and irinotecan treated tumours return to pre-treatment levels of proliferation while irinophore C induces a much more sustained effect. Topotecan and irinotecan induce an early onset of apoptosis (1-8 hours) while Irinophore C resuts in a late induction (7-14

time from start of treatment (days)